Mackey-Arens Theorem for locally convex spaces.

Topological groups.

Vilenkin’s Contribution: Locally quasi-convex groups (lqc-groups).

Duality for groups and the failure of Mackey-Arens Theorem for lqc-groups.

g-barrelled groups: a satisfactory class of groups.

The talk is mainly based upon the paper:

On Mackey topology for groups

by M. J. Chasco, E. Martín-Peinador and V. Tarieladze

Vector space dualities

Let

- E vector space over \mathbb{R}.
- $E^a = \{ f : E \rightarrow \mathbb{R} \text{ linear mapping} \}$ is a vector space called the algebraic dual of E.
- F subspace of E^a
- Duality (E, F) is the pair. If F separates points of E, it is a separated duality
- (E, τ) be a topological vector space (tvs).

The dual of (E, τ) is:

$$(E, \tau)^* := CLin(E, \mathbb{R})$$

If (E, τ) has a basis of convex nbhds of 0, it is a locally convex space (lcs).
Topologies associated to a duality \((E, F)\)

- \(\sigma(E, F)\) is the weak topology on \(E\), corresponding to the family \(F\). It is a linear Hausdorff topology provided \(F\) separates points of \(E\).
- \(\sigma(F, E)\) is the topology on \(F\) of pointwise convergence on the elements of \(E\).
- If \((E, \tau)\) is a tvs, and \(E^*\) its dual there is a **natural** duality: \((E, E^*)\).

Topology compatible with a vector duality

1) A linear topology \(\nu\) on a vector space \(E\) is compatible with the duality \((E, F)\) if \((E, \nu)^* = F\).

2) For a tvs \((E, \tau)\), a linear topology \(\nu\) is called compatible with \(\tau\), if it is compatible with the natural duality \((E, E^*)\).

\(\sigma(E, F)\) y \(\sigma(F, E)\) are locally convex topologies compatible with the duality \((E, F)\), on \(E\) and \(F\) respectively.
Let \((E, \tau)\) be a tvs.

- Denote by \(C(E_\tau)\) the family of all the locally convex topologies on \(E\) compatible with \(\tau\).
- \(C(E_\tau)\) is partially ordered by \(\subseteq\).
- \(\sigma(E, E^*)\) is the bottom element in \(C(E_\tau)\)

Mackey-Arens Theorem

i) There exists a top element \(\mu\) in \(C(E_\tau)\). It is called the Mackey topology for \((E, \tau)\).

ii) The Mackey topology in \(C(E_\tau)\) is the topology of uniform convergence on the family \(\mathcal{G}\) of all the \(\sigma(E^*, E)\)-compact and absolutely convex subsets of \(E^*\).
Topological groups (tg)

Elementary examples of tg

- The group of integers \mathbb{Z} endowed with the discrete topology.
- $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ with the respective euclidean (or induced) topologies.
- \mathbb{T} the multiplicative group of complex number modulus 1.
- The linear group $\text{GL}(\mathbb{R}, n)$ with the topology induced by that of \mathbb{R}^{n^2}. (Non abelian)
- Any topological vector space with respect to addition.
- The group of integers endowed with the p-adic topology τ_p. A zero nbd basis for τ_p (p is a prime number) is given by the family $\mathcal{U} := \{ p^n\mathbb{Z} : n \in \mathbb{N} \}$.
- τ_p is a precompact metrizable topology.
- Any product of topological groups endowed with the product topology.
The dual of a topological group

All the groups in the sequel will be abelian. We omit this term.

- Dualizing object: the topological group \mathbb{T}.
- Homomorphisms from any group G to \mathbb{T} are called characters. The set of all characters $G^a := \text{Hom}(G, \mathbb{T})$ has a group structure with respect to the pointwise operation.
- For a topological group (G, τ), the continuous characters form a subgroup of G^a called the dual group of (G, τ). It will be denoted by $G^\wedge := \text{CHom}(G, \mathbb{T}) \leq \text{Hom}(G, \mathbb{T})$.
- $\mathbb{T}_+ := \{x \in \mathbb{T}, \text{Re}x \geq 0\}$

Duals of some elementary groups

1. $\mathbb{Z}^\wedge \cong \mathbb{T}$.
2. $\mathbb{T}^\wedge \cong \mathbb{Z}$.
3. $\mathbb{R}^\wedge \cong \mathbb{R}$.
4. For $n > 0$, $(\mathbb{R}^n)^\wedge \cong \mathbb{R}^n$.

Mackey-Arens Theorem for Abelian topological groups.
Reflexive groups

The Pontryagin dual of a topological group \((G, \tau)\) is the pair \((G^\wedge, \tau_{co})\), where \(\tau_{co}\) denotes the compact-open topology. Briefly: \(G^\wedge_{co} : = (G^\wedge, \tau_{co})\), and \(G^{\wedge\wedge} : = (G^\wedge_{co})^\wedge_{co}\) is the bidual.

Definition

A group \((G, \tau)\) is reflexive if the canonical mapping:

\[
\alpha_G : G \longrightarrow G^{\wedge\wedge}
\]

\[
g \longmapsto \alpha_G(g) : G^\wedge \longrightarrow \mathbb{T}
\]

\[
\gamma \longmapsto \alpha_G(\gamma) : = \gamma(g)
\]

is a topological isomorphism between \(G\) and its bidual \(G^{\wedge\wedge}\).

Pontryagin Duality Theorem (1934-1935)

Every locally compact abelian group (LCA- group) is reflexive.

In particular: \(\mathbb{R}, \mathbb{T}, \mathbb{Z}, \mathbb{R}^n\) are reflexive groups. A Banach space is a reflexive group (M. Smith, 1951).
Duality for abelian groups

Let G be a group and $F \leq G^a := \text{Hom}(G, \mathbb{T})$. The pair (G, F) is a group duality. If (G, τ) is a tg, there is a natural duality: (G, G^\wedge).

Topologies associated to the group duality (G, F):

- $\sigma(G, F)$ the weak topology on G corresponding to the elements of F. It is a precompact group topology. It is Hausdorff whenever F separates the points of G.

- $\sigma(F, G)$ the topology on F of pointwise convergence on the elements of G. It is a Hausdorff precompact topology.
Vilenkin’s contribution

Quasi-convex subsets of a tg.

Let \((G, \tau)\) be a tg. A subset \(S \subseteq G\) is **quasi-convex** if for any \(x \in G \setminus S\) there exists \(\chi \in G^\wedge\) such that \(\chi(S) \subset T_+\) and \(\chi(x) \notin T_+\).

Example: \([-1, 0, 1] \subset \mathbb{R}\) is quasi-convex in \(\mathbb{R}_u\). Obviously non convex!!!.

Properties of quasi-convex subset

Let \((G, \tau)\) be a tg and \(S \subset G\) quasi-convex. The following hold:

- \(0 \in S\) and \(S\) is symmetric.
- \(S\) is closed, since \(S = \bigcap_{\chi \in S} \chi^{-1}(T_+)\)

Definition

A tg \(G\) is **locally quasi-convex** (lqc) if it has a basis of 0-nbhs that are quasi-convex.
Definition

Let $\mathcal{T} = (G, \tau)$ be a tg, $S \subseteq G$ and $A \subseteq G\wedge$.

- **The polar of S is:** $S^\triangledown := \{ \chi \in G\wedge \mid \chi(S) \subseteq \mathbb{T}_+ \}$.

- **The prepolar of A is:**

 $A^\triangledown := \{ x \in G \mid \chi(x) \in \mathbb{T}_+ \text{ for all } \chi \in A \}$.

The following statements hold:

- S^\triangledown is quasi-convex in $(G\wedge, \sigma(G\wedge, G))$ and A^\triangledown is quasi-convex in (G, τ).

- The family $\mathcal{U} := \{ K^\triangledown \mid K \subseteq G \text{ compact} \}$ is a basis of 0-nbhs for the compact-open topology in $G\wedge$.

- A subset $L \subseteq G\wedge$ is equicontinuous (with respect to τ) if there exists a 0-nbhd $U \subset G$, such that $L \subseteq U^\triangledown$.

- The polar V^\triangledown of a 0-nbhd $V \subset G$, is equicontinuous and $\sigma(G\wedge, G)$-compact.
Consequences easily derived:

- The dual group of a discrete group is compact
- The dual group of a compact group is discrete.
- The dual group of an LCA-group is LCA.
Examples and stability properties

- Any dual group, say G^\wedge, is lqc.
- Reflexive groups are lqc. In particular, LCA-groups are lqc.
- Any subgroup of a lqc-group is lqc.
- Arbitrary products of lqc-groups are lqc-groups.
- Hausdorff quotients of lqc-groups are not in general lqc.
- If (G, τ) has sufficiently many continuous characters, $(G, \sigma(G, G^\wedge))$ is lqc.
- Every locally convex space is a lqc-group.
Auxiliary notions for the definition of the Mackey topology for a topological group:

Auxiliary definitions

- Let (G, τ) be a tg. A group topology ν on G is **compatible** with τ if $(G, \tau)^{\wedge} = (G, \nu)^{\wedge}$ (equality as sets).
- $\mathcal{LQC}(G_{\tau})$ denotes the family of all locally quasi-convex topologies on G that are compatible with τ.

Mackey topology and Mackey group

- Let (G, τ) be a tg. A lqc topology μ on G is **the Mackey topology** for (G, τ) if it is the top element in $\mathcal{LQC}(G_{\tau})$.
- If (G, τ) carries the Mackey topology (i.e. $\tau = \mu$) then (G, τ) is a **Mackey group**.
Mackey and non-Mackey groups

Theorem (Chasco, M-P, Tarieladze (1999))

Every lqc Hausdorff and completely metrizable is a Mackey group.

A metrizable non complete Mackey group

\[\mathbb{Z}_p^{(\mathbb{N})} \] (direct sum of countably many copies of the cyclic group \(\mathbb{Z}_p \)), with the topology induced by the product in \(\mathbb{Z}_p^{\mathbb{N}} \).

A metrizable lqc group may not be Mackey:

Dikranjan, M-P, Tarieladze (2010)

Let \(X \neq \{0\} \) be a connected, compact metrizable group. the group \(c_0(X) \subset X^{\mathbb{N}} \) of the null sequences on \(X \), with the topology induced by the product in \(X^{\mathbb{N}} \), is not a Mackey group.
Other non-Mackey groups:

Aussenhofer, de la Barrera (2011)

A linear, nondiscrete topology on \mathbb{Z} is not a Mackey topology. Therefore, (\mathbb{Z}, τ_p) (the integers with the p-adic topology) is not a Mackey group.

The group of rationals \mathbb{Q}_u is not a Mackey group.

Open questions.

- Has \mathbb{Q}_u a Mackey topology?.
- Is there a Mackey topology in the duality $(\mathbb{Z}, \mathbb{Z}(p^{\infty}))$?
The failure of Mackey-Arens Theorem for abelian tg

Free abelian topological group over a Tychonoff space.

For a Tychonoff space X, there exists a topological abelian group $A_G(X)$, unique with the following characteristics:

- The supporting set of $A_G(X)$ is the free abelian group over X.
- X is topologically embedded in $A_G(X)$ as a closed subset.
- If Y is an abelian topological group and $f : X \to Y$ a continuous mapping, f can be uniquely “extended” to a continuous homomorphism from $A_G(X)$ into Y.

$A_G(X)$ is called the free abelian topological group over X. Its existence was proved by Graev.

Aussenhofer, Gabriyelyan (2018)

The free abelian topological group $A_G(s)$ where s is the null sequence $s := \{0\} \cup \{1/n : n \in \mathbb{N}\}$ does not have a Mackey topology.
g-barrelled groups

Definition (Chasco, M - P , Tarieladze 1999)

A topological group \((G, \tau)\) is g-barrelled if every \(\sigma(G^\wedge, G)\)-compact \(L \subseteq G^\wedge\) is equicontinuous.

Theorem (Chasco, M - P , Tarieladze 1999)

Every g-barrelled and lqc group \((G, \tau)\) is a Mackey group. Furthermore, \(\tau\) is the topology of uniform convergence on the \(\sigma(G^\wedge, G)\)-compact subsets of \(G^\wedge\).

Corollary

For a \(t\)g \((G, \tau)\) there is at most one g-barrelled topology in \(\mathcal{LQC}(G_\tau)\).

It may happen that there are many g-barrelled compatible topologies, non locally quasi-convex.
Classes of g-barrelled groups

- Metrizables, hereditariamente Baire [Chasco, M.P., Tarieladze, 1999].
- Baire separable [idem, 1999].
- Čech completos (in particular, todo grupo localmente compacto abeliano) [idem, 1999].
- Pseudocompact groups [Hernández, Macario, 2003].
- Precompact, Baire, with bounded torsion [Chasco, Domínguez, Tkachenko, 2017].
Non \(g \)-barrelled topological groups

- \(\mathbb{Q}u \).
- Any countable MAP group.

The dual group of a \(g \)-barrelled group may not be \(g \)-barrelled:

\[
c_0(T) := \{(t_n)_{n \in \mathbb{N}} \in T^\mathbb{N} : \lim_{n} |t_n - 1| = 0 \}.
\]

with the metric \(d : c_0(T) \times c_0(T) \rightarrow \mathbb{R}_+ \) defined by:

\[
d(s, t) = \max_{n \in \mathbb{N}} |s_n - t_n|, \quad t = (t_n)_{n \in \mathbb{N}} \in c_0(T), \quad s = (s_n)_{n \in \mathbb{N}} \in c_0(T).
\]

\((c_0(T), d)\) is a complete metric space. Its dual is isomorphic to the direct sum of countably many copies of \(\mathbb{Z} \), say \(\mathbb{Z}^{(\mathbb{N})} \).

\(c_0(T) \) es \(g \)-barrelled, pero su dual \((c_0(T))^\wedge\) no lo es.
The products, the direct sums and the inductive limits of \(g \)-barrelled groups are \(g \)-barrelled.

Definition (Frolik, 1961)

A topológical space \((X, \tau)\) is strongly countably complete \(\text{SCC} \) if there exists a sequence of open coverings \(\{A_n, n \in \mathbb{N}\} \) such that any decreasing sequence \(\mathcal{F} \) of closed nonempty subsets of \(X \), has nonempty intersection, provided that \(\mathcal{F} \) contains \(A_i \)-small sets for every \(i \in \mathbb{N} \).
Definition

A regular topological space X is a Namioka space if for all compact space Y, for all metrizable space Z and for all $f : Y \times X \to Z$ separately continuous, there exists a G_δ-dense subset $A \subset X$, such that f is jointly continuous for every point in $Y \times A$.

Theorem (Namioka)

Every regular SCC topological space is a Namioka space.

Domínguez, M-P, Tarieladze

Namioka topological groups are g-barrelled. Therefore SCC-groups are also g-barrelled.
The conditions 1) and 2) of the Mackey-Arens Theorem may be non-equivalent for topological groups, as the following example shows:

(Bonales, Trigos-Arrieta, Vera Mendoza, 2003)

Let $G := \mathbb{Z}_5^{(\mathbb{N})}$ (direct sum of countably many copies of the cyclic group of order 5), with the topology ν induced by the product in $\mathbb{Z}_5^\mathbb{N}$. The following holds:

- It is lqc and $|\mathcal{LQC}(G_\tau)| = 1$. Therefore ν is the Mackey topology.
- The topology on G of uniform convergence on the $\sigma(G^\wedge, G)$-compact subsets of G^\wedge is discrete, thus different of the original topology ν.
- (G, ν) is not g-barrelled.

The above group G is Mackey but non g-barrelled.

