Twisted sums of c_0 and $C(K)$: Scattered Spaces

Claudia Correa
Universidade Federal do ABC – Brazil

Banach spaces and their applications,
Lviv, Ukraine, 26-29 June 2019
Question

Assume K is a nonmetrizable scattered compact space. Is there a nontrivial twisted sum of c_0 and $C(K)$?
Question

Assume K is a nonmetrizable scattered compact space. Is there a nontrivial twisted sum of c_0 and $C(K)$?

Definition

A topological space is said to be scattered if every nonempty subspace has an isolated point with respect to the subspace topology.
Question

Assume K is a nonmetrizable scattered compact space. Is there a nontrivial twisted sum of c_0 and $C(K)$?

Definition

A topological space is said to be scattered if every nonempty subspace has an isolated point with respect to the subspace topology.

Example

If Γ is a discrete topological space, then its one-point compactification $\Gamma \cup \{\infty\}$ is scattered.
Definition

Let \mathcal{X} be a topological space. We define by recursion on α a decreasing family of closed subsets of \mathcal{X}:

- $\mathcal{X}^{(0)} = \mathcal{X}$;
- For every ordinal α, $\mathcal{X}^{(\alpha+1)} = \mathcal{X}^{(\alpha)} \setminus \text{Is}(\mathcal{X}^{(\alpha)})$, where $\text{Is}(\mathcal{X}^{(\alpha)})$ denotes the set of isolated points of $\mathcal{X}^{(\alpha)}$;
- For every limit ordinal α, $\mathcal{X}^{(\alpha)} = \bigcap_{\beta \in \alpha} \mathcal{X}^{(\beta)}$.

The space $\mathcal{X}^{(\alpha)}$ is called the α^{th} Cantor–Bendixson derivative of \mathcal{X}.
Definition

Let \mathcal{X} be a topological space. We define by recursion on α a decreasing family of closed subsets of \mathcal{X}:

- $\mathcal{X}^{(0)} = \mathcal{X}$;
- For every ordinal α, $\mathcal{X}^{(\alpha+1)} = \mathcal{X}^{(\alpha)} \setminus Is(\mathcal{X}^{(\alpha)})$, where $Is(\mathcal{X}^{(\alpha)})$ denotes the set of isolated points of $\mathcal{X}^{(\alpha)}$;
- For every limit ordinal α, $\mathcal{X}^{(\alpha)} = \bigcap_{\beta \in \alpha} \mathcal{X}^{(\beta)}$.

The space $\mathcal{X}^{(\alpha)}$ is called the α^{th} Cantor–Bendixson derivative of \mathcal{X}.

Proposition

A topological space \mathcal{X} is scattered if and only if there exists an ordinal α such that $\mathcal{X}^{(\alpha)} = \emptyset$.
Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}^{(\alpha)} = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.
Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}(\alpha) = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.

Theorem (Castillo, Top. Appl.–2016)

Assume CH. If K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and $C(K)$.
Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}(\alpha) = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.

Theorem (Castillo, Top. Appl.–2016)

Assume CH. If K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and $C(K)$.

The proof of this result was obtained using homological tools.

Question

Does it hold in ZFC that if K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and $C(K)$?

Answer: No.
Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}(\alpha) = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.

Theorem (Castillo, Top. Appl.–2016)

Assume CH. If K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and $C(K)$.

The proof of this result was obtained using homological tools.

Question

Does it hold in ZFC that if K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of c_0 and $C(K)$? Answer: No.
Definition

If \mathcal{X} is scattered, then the height of \mathcal{X} is defined as the least ordinal α such that $\mathcal{X}^{(\alpha)} = \emptyset$. If the height of \mathcal{X} is a natural number, then we say that \mathcal{X} has finite height.

Theorem (Castillo, Top. Appl.–2016)

Assume CH. If K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of ℓ^1 and $C(K)$.

The proof of this result was obtained using homological tools.

Question

Does it hold in ZFC that if K is a nonmetrizable finite height compact space, then there exists a nontrivial twisted sum of ℓ^1 and $C(K)$?

Answer: No.
Theorem (Marciszewski and Plebanek, JFA–2018)

Assume $\text{MA} + \neg \text{CH}$. If K is a separable compact space with height 3 and $w(K) < c$, then every twisted sum of c_0 and $C(K)$ is trivial.
Theorem (Marciszewski and Plebanek, JFA–2018)

Assume $\text{MA} \vdash \neg \text{CH}$. If K is a separable compact space with height 3 and $w(K) < c$, then every twisted sum of c_0 and $C(K)$ is trivial.

Idea of the proof:

- Assume $\text{MA} \vdash \neg \text{CH}$. Let K be a boolean separable space with $w(K) < c$. If the boolean algebra of clopen subsets of K has the local extension property, then every twisted sum of c_0 and $C(K)$ is trivial.
Theorem (Marciszewski and Plebanek, JFA–2018)

Assume $MA + \neg CH$. If K is a separable compact space with height 3 and $w(K) < c$, then every twisted sum of c_0 and $C(K)$ is trivial.

Idea of the proof:

- Assume $MA + \neg CH$. Let K be a boolean separable space with $w(K) < c$. If the boolean algebra of clopen subsets of K has the local extension property, then every twisted sum of c_0 and $C(K)$ is trivial.
- if K has height 3, then $Clop(K)$ has the local extension property.
Theorem (Correa and Tausk, Fund. Math.–2019)
If \(K \) is a compact space with finite height, then \(\text{Clop}(K) \) has the local extension property.

Corollary
Assume MA + \(\neg \) CH. If \(K \) is a separable compact space with finite height and \(\omega(K) < c \), then every twisted sum of \(c_0 \) and \(\text{C}(K) \) is trivial.

Corollary
Let \(K \) be a separable finite height compact space with \(\omega(K) < c \). Then the existence of nontrivial twisted sums of \(c_0 \) and \(\text{C}(K) \) is independent of the axioms of ZFC.
Theorem (Correa and Tausk, Fund. Math.–2019)

If K is a compact space with finite height, then $\text{Clop}(K)$ has the local extension property.

Corollary

Assume $\text{MA}+\neg\text{CH}$. If K is a separable compact space with finite height and $w(K) < c$, then every twisted sum of c_0 and $C(K)$ is trivial.

Corollary

Let K be a separable finite height compact space with $w(K) < c$. Then the existence of nontrivial twisted sums of c_0 and $C(K)$ is independent of the axioms of ZFC.
Question

What happens, under $\text{MA}+\neg\text{CH}$, if K is a nonseparable finite height compact space with $w(K) < c$?
Question

What happens, under $\text{MA} \vdash \lnot \text{CH}$, if K is a nonseparable finite height compact space with $w(K) < c$?

Theorem (Correa, Fund. Math.–2019)

Assume $\text{MA} \vdash \lnot \text{CH}$. If K is a nonseparable scattered compact space with $w(K) < c$, then there exists a nontrivial twisted sum of c_0 and $C(K)$.
Let $\gamma \omega$ be a compactification of ω and $\gamma \omega \setminus \omega$ be the reminder of this compactification. If $R : C(\gamma \omega) \to C(\gamma \omega \setminus \omega)$ denotes the restriction operator, then $\text{Ker}(R)$ is isomorphic to c_0 and therefore the following is a twisted sum of c_0 and $C(\gamma \omega \setminus \omega)$:

$$0 \to c_0 \to C(\gamma \omega) \xrightarrow{R} C(\gamma \omega \setminus \omega) \to 0.$$
Let $\gamma \omega$ be a compactification of ω and $\gamma \omega \setminus \omega$ be the reminder of this compactification. If $R : C(\gamma \omega) \rightarrow C(\gamma \omega \setminus \omega)$ denotes the restriction operator, then $\text{Ker}(R)$ is isomorphic to c_0 and therefore the following is a twisted sum of c_0 and $C(\gamma \omega \setminus \omega)$:

$$0 \rightarrow c_0 \rightarrow C(\gamma \omega) \xrightarrow{R} C(\gamma \omega \setminus \omega) \rightarrow 0.$$

(W. Kubiś) If the above twisted sum is trivial, then $\gamma \omega \setminus \omega$ is the support of a strictly positive regular measure.
Let $\gamma \omega$ be a compactification of ω and $\gamma \omega \setminus \omega$ be the reminder of this compactification. If $R : C(\gamma \omega) \rightarrow C(\gamma \omega \setminus \omega)$ denotes the restriction operator, then $\text{Ker}(R)$ is isomorphic to c_0 and therefore the following is a twisted sum of c_0 and $C(\gamma \omega \setminus \omega)$:

$$0 \rightarrow c_0 \rightarrow C(\gamma \omega) \xrightarrow{R} C(\gamma \omega \setminus \omega) \rightarrow 0.$$

(W. Kubiś) If the above twisted sum is trivial, then $\gamma \omega \setminus \omega$ is the support of a strictly positive regular measure.

(van Douwen and Przymusiński-1980) Assume $MA + \neg CH$. If K is a compact Hausdorff space with $w(K) < c$, then K is homeomorphic to the reminder of a compactification of ω.

Let $\gamma \omega$ be a compactification of ω and $\gamma \omega \setminus \omega$ be the reminder of this compactification. If $R : C(\gamma \omega) \to C(\gamma \omega \setminus \omega)$ denotes the restriction operator, then $\text{Ker}(R)$ is isomorphic to c_0 and therefore the following is a twisted sum of c_0 and $C(\gamma \omega \setminus \omega)$:

$$0 \to c_0 \to C(\gamma \omega) \xrightarrow{R} C(\gamma \omega \setminus \omega) \to 0.$$

(W. Kubiś) If the above twisted sum is trivial, then $\gamma \omega \setminus \omega$ is the support of a strictly positive regular measure.

(van Douwen and Przymusiński-1980) Assume $\text{MA} + \neg \text{CH}$. If K is a compact Hausdorff space with $\omega(K) < \mathfrak{c}$, then K is homeomorphic to the reminder of a compactification of ω.

If K is a compact and scattered space, then every regular measure has separable support.
Question

What happens, under MA+\neg CH, if K is a nonseparable compact scattered space with $w(K) = c$?
Question
What happens, under MA + ¬ CH, if K is a nonseparable compact scattered space with \(w(K) = c \)?

Assume MA + ¬ CH. If K is a compact Hausdorff space with \(w(K) < c \), then K is homeomorphic to the reminder of a compactification of \(\omega \).
Question

What happens, under MA + ¬ CH, if K is a nonseparable compact scattered space with $w(K) = c$?

Assume MA + ¬ CH. If K is a compact Hausdorff space with $w(K) < c$, then K is homeomorphic to the reminder of a compactification of ω.

Question

Does it hold under MA + ¬ CH that every compact Hausdorff space K with $w(K) = c$ is homeomorphic to the reminder of a compactification of ω?
What happens, under $\text{MA} + \neg \text{CH}$, if K is a nonseparable compact scattered space with $w(K) = \mathfrak{c}$?

Assume $\text{MA} + \neg \text{CH}$. If K is a compact Hausdorff space with $w(K) < \mathfrak{c}$, then K is homeomorphic to the reminder of a compactification of ω.

Does it hold under $\text{MA} + \neg \text{CH}$ that every compact Hausdorff space K with $w(K) = \mathfrak{c}$ is homeomorphic to the reminder of a compactification of ω?

Answer: No.
Theorem (Frankiewicz, Fund. Math.–1985)

It is relatively consistent with MA + ¬CH the existence of a compact Hausdorff space with weight ℵ that is not homeomorphic to the reminder of a compactification of ω. This space is not scattered.
Theorem (Frankiewicz, Fund. Math.–1985)

It is relatively consistent with $\text{MA} + \neg \text{CH}$ the existence of a compact Hausdorff space with weight \mathfrak{c} that is not homeomorphic to the reminder of a compactification of ω. This space is not scattered.

Open Problem

Does it hold under $\text{MA} + \neg \text{CH}$ that every compact scattered space K with $w(K) = \mathfrak{c}$ is homeomorphic to the reminder of a compactification of ω?
Assume $\text{MA} + \neg \text{CH}$. Let K be a compact Hausdorff and scattered space with $w(K) = c$. If

$$\left| \{ p \in K : w(K, p) > \omega \} \right| < c,$$

then K is homeomorphic to the reminder of a compactification of ω.

$$w(K, p) = \min \{ w(V) : V \text{ is a nhood of } p \}$$
Theorem (Correa, Fund. Math.–2019)

Assume MA + ¬CH. Let K be a compact Hausdorff and scattered space with \(w(K) = c \). If

\[
\left| \{ p \in K : w(K, p) > \omega \} \right| < c,
\]

then K is homeomorphic to the remainder of a compactification of \(\omega \).

\[
w(K, p) = \min\{ w(V) : V \text{ is a nhood of } p \}\]
Question

Does it hold in ZFC that if K is a finite height compact space with $w(K) \geq c$, then there exists a nontrivial twisted sum of c_0 and $C(K)$?
Question

Does it hold in ZFC that if K is a finite height compact space with $w(K) \geq \mathfrak{c}$, then there exists a nontrivial twisted sum of c_0 and $C(K)$?

Answer: Yes.

Theorem (Avilés, Marciszewski and Plebanek–2019)

If K is a finite height compact space with $w(K) \geq \mathfrak{c}$, then there exists a nontrivial twisted sum of c_0 and $C(K)$.
Thanks for your attention!
A. Avilés, W. Marciszewski, and G. Plebanek.
Twisting c_0 around nonseparable banach spaces.

J. M. Castillo.
Nonseparable $c(k)$-spaces can be twisted when k is a finite
height compact.

C. Correa.
Nontrivial twisted sums for finite height spaces under martin’s
axiom.

C. Correa and D. V. Tausk.
Local extension property for finite height spaces.
